ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS
نویسندگان
چکیده مقاله:
The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the Particle Swarm Optimization (PSO) algorithm a hybrid algorithm (ANFIS-PSO) is developed for predicting the Froude number of three phase flows. This inference system is a set of if-then rules which is able to approximate non-linear functions. In this model, PSO is employed for increasing the ANFIS efficiency by adjusting membership functions as well as minimizing error values. In fact, the PSO algorithm is considered as an evolutionary computational method for optimizing the process continues and discontinues decision making functions. Additionally, PSO is considered as a population-based search method where each potential solution, known as a swarm, represents a particle of a population. In this approach, the particle position is changed continuously in a multidimensional search space, until reaching the optimal response and or computational limitations. At first, 127 ANFIS-PSO models are defined using parameters affecting the Froude number. Then, by analyzing the ANFIS-PSO model results, the superior model is presented. For the superior model, the Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and the determination coefficient (R2) were calculated equal to 5.929, 0.324 and 0.975, respectively.
منابع مشابه
Predicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملA Multiple Adaptive Neuro-Fuzzy Inference System for Predicting ERP Implementation Success
The implementation of modern ERP solutions has introduced tremendous opportunities as well as challenges into the realm of intensely competent businesses. The ERP implementation phase is a very costly and time-consuming process. The failure of the implementation may result in the entire business to fail or to become incompetent. This fact along with the complexity of data streams has led ...
متن کاملmodeling job performance using optimized adaptive neuro-fuzzy inference system
using current employee performance data to predict the future behavior of the applicants is an interesting area which can broaden new horizons of knowledge lay in the organization. because of inherent ambiguity and uncertainty, cognitive limitations of the human mind make unknown behaviors of very complex systems difficult to predict. as a consequence, it is necessary to model the imprecise mod...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملModeling of Weld Bead Geometry Using Adaptive Neuro-Fuzzy Inference System (ANFIS) in Additive Manufacturing
Additive Manufacturing describes the technologies that can produce a physical model out of a computer model with a layer-by-layer production process. Additive Manufacturing technologies, as compared to traditional manufacturing methods, have the high capability of manufacturing the complex components using minimum energy and minimum consumption. These technologies have brought about the possibi...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 2
صفحات 331- 342
تاریخ انتشار 2019-04
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023